

BERT is not The Count: Learning to Match Mathematical Statements with Proofs

Waylon Li, Yftah Ziser, Maximin Coavoux, Shay B. Cohen

What is the major difference between a general article and a mathematical article?

$$e^{i\pi} + 1 = 0$$

Task & Dataset

1. Background

Task:

Given a collection of mathematical statements $\{s^{(i)}_{i \le N}\}$, and a separate equal-size collection of mathematical proofs $\{p^{(i)}_{i \le N}\}$, we are interested in the problem of assigning a proof to each statement.

Statement. When
$$m = 0$$
 we have $E_{rg}^0 = \emptyset$,
and when $m \neq 0$ we have $E_{rg}^0 = E^0$.
Proof. When $m = 0$, the image of r is $\{1\}$.
Hence $E_{rg}^0 = \emptyset$. When $m \neq 0$, the map r is a
surjective proper map. Hence $E_{rg}^0 = E^0$.

Figure 1: Example of a statement-proof pair.

1. Background

Why we designed the task:

- Mathematical research can benefit from NLP
- Prior NLP work on mathematical research articles focused on Mathematical Information Retrieval (MIR) and related tools or data (Zanibbi et al., 2016; Stathopoulos and Teufel, 2016, 2015)
- It may help MIR by serving as a proxy for the search for the existence of a mathematical result
- Learning to match statements and proofs would also benefit computer-assisted theorem proving

Motivations for creating our dataset:

- Related datasets, such as LEANSTEP (Han et al., 2021) and the synthetic dataset of Polu and Sutskever (2020) do not include natural language.
- NaturalProofs (Welleck et al., 2021), another related dataset, only consists of 32k theorem-proof pairs from ProofWiki, some sub-topics in algebraic geometry and two textbooks.

2. The MATcH Dataset

Source corpus: MREC corpus (Liska et al., 2011) <u>https://mir.fi.muni.cz/MREC/</u>

• Contains around 450k articles from ArxMLiV (Stamerjohanns et al., 2010)

Bilinear Similarity Model

• Trainable Bilinear Similarity Function: $score(\mathbf{s}, \mathbf{p}) = \mathbf{s}^{\top} \cdot \mathbf{W} \cdot \mathbf{p} + b$

statement

Global decoding

proof

Local decoding

Straightforwardly sort each row by decreasing order and assign the proof ranking to the corresponding statement.

$$\hat{p}^{(i)} = \arg\max_{i} m_{ij}$$

$$m_{ij} = \text{score}(\mathbf{s}^{(i)}, \mathbf{p}^{(j)})$$

statement proof

	Statements	Proofs	%				
	≥ 20	7	0.0				
Global deco	oding	80	0.2				
	≥ 5	1027	1.9				
A proof can be a	assigned only	y 10 249 ir	lg le. §ta	atement,	which		
becomes a Linea r Al ssignment Problem (LAP).							
	< 1	21275	40.3				

Table 7: Cumulative distribution of proofs in the development set, by number of statements to which they are assigned with the local decoding method.

Encoders:

- No pre-training encoder (NPT)
- ScratchBERT: pre-train BERT from scratch on MATcH
- MathBERT (Shen et al. 2021): a state-of-the-art pretrained model for mathematical formula understanding

Local training:

$$\mathcal{L}_{\text{LOC}}(s, p, P; \boldsymbol{\theta}) = -\log \mathbb{P}(p|s; \boldsymbol{\theta})$$
$$= -\log \left(\frac{\exp(\text{score}(\mathbf{s}, \mathbf{p}))}{\sum\limits_{p' \in P} \exp(\text{score}(\mathbf{s}, \mathbf{p}'))} \right)$$

where P is the set of proofs, and θ are the parameters of the model.

Hybrid Local and Global training:

We use the following max-margin objective, for a set B of n pairs corresponding to matrix M:

$$\mathcal{L}_{\text{GLOB}}(B; \boldsymbol{\theta}) = \max(0, \Delta(\hat{A}, I) + \text{score}(\hat{A}, M) - \text{score}(I, M))$$
$$\Delta(\hat{A}, I) = \sum_{ij} \max(0, (\hat{A} - I)_{ij})$$

where θ is the set of all parameters \hat{A} is the predicted assignment and I is the gold assignment, i.e. the identity matrix.

PS: this global objective had a slow convergence rate in practice, we use a hybrid local-global objective.

4. Encoders Comparison

 Importance of vocabulary

 Global decoding substantially improves accuracy

Encoder-Decoder	MRR	Acc
NPT-Local-Local	63.22	56.08
NPT-Local-Global	-	61.89
NPT-Global-Global	-	62.14
SCRATCHBERT-Local-Local	73.73	67.12
SCRATCHBERT-Local-Global	-	74.68
SCRATCHBERT-Global-Global	-	71.38
MATHBERT-Local-Local	54.51	46.45
MATHBERT-Local-Global	-	49.77
MATHBERT-Global-Global	-	45.38
		•

5. Symbol Replacement

$a_n = a_{n-1} + a_{n-2}$	Symbol conservation	All symbols remain intact, so the theorem and the proof overlap.
$x_n = x_{n-1} + x_{n-2}$	Partial symbol replacement	A fraction of α of all the symbols in the proof remain the same, and the rest are changed. In our experiments, we use $\alpha = 0.5$.
$x_i = x_{i-1} + x_{i-2}$	Full symbol replacement	All symbol names are changed (α = 1.0 as above).
$n_a = n_{a-1} + n_{a-2}$	Symbol transposition	We permute the variables' names such that no symbol remains the same, thus changing their original functionality.

6. Cross Replacement Results

	Targat	Symbol Replacement							
S.	Source	Conservation		Partial		Full		Transposition	
	Source	MRR	Acc	MRR	Acc	MRR	Acc	MRR	Acc
Mixed	Conservation	73.73	67.12	43.87	36.36	29.74	25.36	69.56	62.23
	Partial	74.21	67.96	64.79	57.20	53.77	45.40	72.13	65.42
	Full	65.26	57.63	63.01	55.13	60.67	52.54	64.59	56.92
	Transposition	73.78	67.40	43.67	36.02	29.76	25.47	73.17	66.51

- Strong dependency on exact symbol name matching
- Lack of importance of mathematical functionality, order and context
- Significant resilience when trained on partial symbol replacement level

7. Qualitative Analysis: LIME (Ribeiro et al., 2016)

Lemma 3.2. Let
$$M$$
 be a module and H
a local submodule of M . Then H is a
supplement of each proper submodule $K \leq M$
with $H + K = M$.
Proof. Since K is a proper submodule of M
and $K + H = M$, we have $K \cap H$ is
a proper submodule of H . Therefore $K \cap H$
 $\ll H$, since H is local. That is, H is a
supplement of K in M .
(https://arxiv.org/pdf/0810.0041.pdf)

(a) Example statement/proof 1 - Symbol conservation

(b) Example statement/proof 1 - Full symbol replacement

8. Protected symbols

Symbol	Usage	Articles with usage			
Р	P(A)	Probability measure			
Ε	E(X)	Expected value			
V	V(X)	Variance			
Æ	$\sigma(X)$	Standard deviation			
0	$\sigma(X,Y)$	Covariance			
ρ	$\rho(X,Y)$	Correlation			

Torgot	Symbol Replacement					
Source	Conse	rvation	Partial+P			
	MRR	Acc	MRR	Acc		
Conservation	69.26	59.59	27.9	18.29		
Partial	61.36	51.72	54.06	42.67		
Partial+P	62.1	51.92	55.92	45.23		
Full	53.63	42.08	52.85	41.4		
Full+P	56.27	45.13	55.92	44.84		

Table 6: Controlled cross-replacement levels performance for the SCRATCHBERT-Local-Local model. Both train and test sets are curated from the probability theory domain. +P next to a symbol replacement method means that Protected symbols are not being replaced.

9. Conclusion & Contribution

- A large dataset (MATcH) for a task focusing on the domain of mathematical research articles
- We proposed two ways to train and do inference with our model and dataset: local matching and global matching
- We assessed the difficulty of the task with several pre-trained encoders, demonstrating the importance of the vocabulary support for these models
- We run further assessment relying on symbol replacement and observe that the model makes a relatively shallow use of the text and formulae to obtain this performance

Thank you!

https://bollin.inf.ed.ac.uk/match.html https://github.com/waylonli/MATcH

THE DESIGN STREAMS