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Overview

We introduce a task consisting in matching a proof to a given mathematical

statement.

We present a dataset for the task (the MATcH dataset) consisting of over 180k

statement-proof pairs extracted from modern mathematical research articles.

We propose a bilinear similarity model and two decoding methods to match

statements to proofs effectively.

Through a symbol replacement procedure, we analyze the “insights” that

pre-trained language models have in such mathematical article analysis and

show that while these models perform well on this task with the best

performing MRR of 73.7, they follow a relatively shallow symbolic analysis and

matching to achieve that performance.

Task Description

Given a collection of mathematical statements {s(i)}i≤N , and a separate equal-size

collection of mathematical proofs {p(i)}i≤N , we are interested in the task of assigning

a proof to each statement.

Figure 1. An illustration to the statement-proof matching task.

Dataset Construction

Source corpus: the MREC corpus [1].

Statistics: some statistics about the dataset we collected.

Number of articles in the MREC corpus 439,423

Extracted articles with statement-proof pairs 27,841

Total number of statement-proof pairs 184,094

Number of (primary) categories (120) 135

Average number of categories per article 1.7

Table 1. Statistics about the dataset.

Symbol Replacement

Motivation:

It is not realistic for researchers to match the proofs they authored.

Each person has a unique writing style expressed by unique mathematical jargon

and notations.

Symbol Replacement Levels:

Figure 2. Four different levels of symbol replacement for the Fibonacci sequence.

Experimental Setup

Dataset: We shuffle the collection of statement-proof pairs before performing a

80%/10%/10% train-development-test split.

Encoders: “No Pre-training Encoder” (NPT), ScratchBERT (pre-train BERT from

scratch on MATcH) and MathBERT [2].

Decoders: Bilinear Similarity Model.

Bilinear Similarity Model

Trainable Bilinear Similarity Function: Given the encoded representations of a state-

ment s = enc(s) and a proof p = enc(p):
score(s, p) = s⊤ ⋅ W ⋅ p + b,

where W and b are parameters that are learned togetherwith a self-attentive encoder

parameters.

Local Decoding: A proof can be one of the candidates of multiple statements.

⇒ We found that 23% of the proofs were assigned to at least two different state-

ments, whereas more than 40% of proofs were assigned to no statement.

Global Decoding: A proof can be assigned only to a single statement.

Local Training: for a single statement s and its gold proof p:

Lloc(s, p, P ; θ) = − log P(p∣s; θ),
where P is the set of proofs, and θ are the parameters of the model.

⇒ Can we do even better by matching the hypothesis of global decoding?

Hybrid Local and Global Training: For a set B of n pairs corresponding to matrix M :

Lglob(B; θ) =max(0, ∆(Â, I)
+ score(Â, M) − score(I, M)),

where θ is the set of all parameters Â is the predicted assignment and I is the gold

assignment, i.e. the identity matrix.

Main Findings

Symbol Replacement Level

Conservation Partial Full Transposition

Encoder-Decoder MRR Acc MRR Acc MRR Acc MRR Acc

NPT-Local-Local 63.22 56.08 47.19 39.24 40.36 32.52 56.17 48.30

NPT-Local-Global - 61.89 - 42.55 - 35.43 - 53.49

NPT-Global-Global - 62.14 - 43.68 - 35.85 - 55.28

ScratchBERT-Local-Local 73.73 67.12 64.79 57.20 60.67 52.54 73.17 66.51

ScratchBERT-Local-Global - 74.68 - 62.80 - 57.69 - 74.03

ScratchBERT-Global-Global - 71.38 - 58.06 - 52.31 - 70.32

MathBERT-Local-Local 54.51 46.45 44.31 36.10 38.91 30.62 52.57 44.52

MathBERT-Local-Global - 49.77 - 37.92 - 32.03 - 47.43

MathBERT-Global-Global - 45.38 - 33.64 - 28.47 - 43.41

Table 2. The MRR and accuracy scores for different combinations of encoders, decoders, and symbol

replacement levels. All the models are trained and tested on the same replacement level.

Vocabulary is essential for learning from mathematical texts.

The symbols’ order, context, and function within the mathematical text do not

play a significant role when the theorem and proof share the same symbols.

Global decoding substantially improves accuracy.

Source

Target
Symbol Replacement

Conservation Partial Full Transposition

MRR Acc MRR Acc MRR Acc MRR Acc

M
ix
e
d

Conservation 73.73 67.12 43.87 36.36 29.74 25.36 69.56 62.23

Partial 74.21 67.96 64.79 57.20 53.77 45.40 72.13 65.42

Full 65.26 57.63 63.01 55.13 60.67 52.54 64.59 56.92

Transposition 73.78 67.40 43.67 36.02 29.76 25.47 73.17 66.51

Table 3. Cross-replacement levels performance for the ScratchBERT-Local-Local model.

The model developed a strong dependency on exact symbol name matching.

The model trained on the Partial symbol replacement level demonstrated

significant resilience when tested with other symbol replacement levels.

Lemma 3.2. Let M be a module and H a local

submodule of M . Then H is a supplement of

each proper submodule K ≤ M with H + K =

M .

Proof. Since K is a proper submodule of M and

K + H = M , we have K ∩ H is a proper

submodule of H . Therefore K ∩ H ≪ H , since

H is local. That is , H is a supplement of K in

M .

(a) Example - Symbol conservation

Lemma 3.2. Let M be a module and H a local

submodule of M . Then H is a supplement of

each proper submodule K ≤ M with H +K = M .

Proof. Since K is a proper submodule of M
and K + H = M , we have K ∩ H is a proper

submodule of H . Therefore K ∩ H ≪ H , since

H is local . That is , H is a supplement of K in

M .

(b) Example - Full symbol replacement

Figure 3. LIME visualizations for the model that was trained in the symbol conservation setup and full

symbol replacement setup. “match” - orange, “mismatch” - blue.
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