
SynthRank: Synthetic Data Generation of Individual’s Financial Transactions
Through Learning to Ranking

Weixian Waylon Li 1 Mengyu Wang 1 Carsten Maple 2,3 Tiejun Ma 1,3

1University of Edinburgh
2University of Warwick

3The Alan Turing Institute
{W.Li-67, M.Wang-100}@sms.ed.ac.uk

cm@warwick.ac.uk
tiejun.ma@ed.ac.uk

Abstract

Obtaining financial transaction data is notably challenging,
largely attributed to strict privacy regulations and the sensi-
tivity of personal financial details. In this context, synthetic
data generation can offer a practical solution. In contrast to
existing approaches that utilise generative models dedicated
to replicating authentic data distributions, this paper proposes
SynthRank, an innovative approach founded on the learning-
to-rank (LETOR) algorithm, for financial transaction syn-
thetic data creation. Focusing specifically on the task of risky
trader detection and prediction, we leverage LETOR tech-
niques to generate ranking scores for each attribute of transac-
tion. These scores are aggregated into a new vector, constitut-
ing the synthetic data. By segmenting data into distinct rank-
ing groups, we produce synthetic data without quantity lim-
itations. Crucially, our approach guarantees the privacy pro-
tection of individual data, as sensitive information becomes
challenging for attackers to infer. Our comprehensive analy-
sis demonstrates that SynthRank not only enhances predic-
tion power but also preserves the essential distribution char-
acteristics and privacy of the original dataset.

1 Introduction
Synthetic data refers to data produced through mathematical
models or algorithms designed to address one or more data
science objectives (Jordon et al. 2022). Its importance is am-
plified in contexts where individual data privacy needs to be
preserved. In the finance sector, significant constraints exist
in accessing data both within and across organisations. Fi-
nancial data, such as transaction records, often contain sen-
sitive information including personal detail, which preclude
it being shared. Furthermore, limited historical data archives
and skewed class distributions pose additional challenges on
training trustworthy deep learning models that require sub-
stantial data (Assefa et al. 2021).

Researchers have put great efforts into generating syn-
thetic data. Such data satisfies the increasing need for big
data to train models for multiple tasks including risk assess-
ment and money laundry detection (Fu et al. 2019; Rizzato
et al. 2023). Integrating synthetic data into financial models
becomes essential for business and society, not merely an
area of academic exploration.
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While synthetic data generation has advanced in capturing
feature distributions of the real data, issues remain concern-
ing its utility and privacy. The utility is often referring to
task-specific effectiveness, but this may not correspond with
the generated data’s distributional similarity (Jordon et al.
2022). Moreover, there is a persistent risk of sensitive infor-
mation disclosure, despite the models’ aim to only emulate
the statistical characteristics of original data. Malicious at-
tackers can collect public information to infer protected real
values from the synthetic data (Zhao et al. 2021a).

To improve the quality of synthetic financial transaction
data and align with the rigorous privacy regulations, we pro-
pose SynthRank, a novel approach based on learning-to-
rank (LETOR) algorithms. We take a case study, the task
of risky trader prediction, which shares characteristics with
many financial transaction related analytic tasks, such as
fraud detection (Zheng et al. 2019) and money laundering
detection (Paula et al. 2016). We propose to adapt LETOR
techniques to extract relationships between input transaction
data and risk labels to construct our synthetic transaction
data. This synthetic data framework offers two key advan-
tages. Firstly, it allows for unlimited synthetic data genera-
tion by applying different group allocations. Secondly, it sig-
nificantly enhances the privacy safeguard, since inferring the
original data from the synthetic dataset without both rank-
ing model and group allocation knowledge is challenging, as
demonstrated in our experiments (Section 5.3). Additionally,
our synthetic data maintains higher quality than the baseline
models, as evidenced by improved prediction AUC scores
and preserved distribution characteristics. In summary, the
main contributions of this paper are as follows:

• We adapt LETOR algorithms to the generation of syn-
thetic financial transaction data. These algorithms are ca-
pable of extracting relationships between original data
items and labels, facilitating the construction of synthetic
features. The allocation of ranking groups enhances the
flexibility and controllability of the synthetic process.

• We recognise the conflicting objectives of privacy, utility,
and feature similarity in financial data synthesis. In re-
sponse, we introduce SynthRank, a task-oriented pipeline
for synthetic financial transaction data generation. Our
approach achieves an exceptional balance between pri-
vacy protection against inference attacks and utility in



risky trader prediction, while maintaining an acceptable
level of feature fidelity. The results indicate a potential
direction for future research in synthetic data generation
for other financial tasks.

2 Background
2.1 Synthetic Data Generation for Financial

Domain
Regarding synthetic data generation techniques, the Syn-
thetic Minority Oversampling Technique (SMOTE) (Chawla
et al. 2002) is noteworthy as a traditional algorithm. It is
specifically designed to generate minority class samples,
aiming to address the class imbalance problem. With the
surge of deep learning, synthetic data generation witnessed
a transformative phase. Three predominant deep learning
generative models have emerged: Bayesian networks (BNs)
(Zhang et al. 2017), autoencoders (AEs) (Goodfellow, Ben-
gio, and Courville 2016), and Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014; Zhao et al. 2021b).
Additionally, the integration of language models in synthetic
data generation, particularly for textual and tabular data, has
shown promising results (Borisov et al. 2023; Solatorio and
Dupriez 2023).

Despite advancements in synthetic data generation, their
applications in finance is constrained by limited access to
real-world datasets. Recent applications of GANs for gener-
ating time-series financial data (Wiese et al. 2020; Nickerson
et al. 2023) and credit card fraud detection data (Strelcenia
and Prakoonwit 2022) have shown promise. However, it is
crucial to point out a significant limitation acknowledged
by the authors in these studies: the generation methods lack
a comprehensive assessment of privacy guarantees. This
might expose the data to potential inference attacks, thus
posing a risk to the confidentiality (Ram Mohan Rao, Mu-
rali Krishna, and Siva Kumar 2018).

Given this privacy concern, there is an evident and press-
ing need for novel methods with comprehensive evaluation.
These methodologies must encompass critical dimensions,
including utility, similarity to real data, and privacy safe-
guards, particularly for generating financial transaction data
(Jordon et al. 2022). This underscores the ongoing quest for
robust and secure synthetic transaction data solutions.

2.2 LEarning-TO-Rank (LETOR)
Learning-to-Rank (LETOR) algorithms have firmly estab-
lished their significance in various domains, such as rec-
ommendations and document retrieval, proficiently ranking
items based on their inherent features (Phophalia 2011). In
contrast, the potential of LETOR in synthesising financial
transaction data remains largely unexplored. This highlights
both the novelty and difficulty of integrating LETOR tech-
niques into the generation of privacy-preserving financial
transaction data, an endeavour that has yet to be fully re-
alised in the field.

The challenges in this context are twofold. Firstly, the
distinction between LETOR algorithms and traditional gen-
erative models lies at the definition level. LETOR origi-
nally focuses on ranking and retrieving existing items (Fuhr

1989), whereas generative models aim to create entirely new
data instances. Bridging this conceptual gap between re-
trieval and generation is challenging and requires innova-
tive adaptations of LETOR techniques. Secondly, ensuring
that privacy is not compromised in synthetic data genera-
tion is paramount, especially in sensitive domains such as
financial transactions. Integrating privacy-preserving mech-
anisms into LETOR-based approaches while maintaining
data quality and utility is a multifaceted problem that de-
mands advanced techniques.

However, LETOR also demonstrates its potential. Its abil-
ity to discern relationships at individual, paired, and list lev-
els makes it a promising solution for modelling the statisti-
cal attributes of data and enhancing embeddings (Phophalia
2011). Moreover, LETOR’s inherent adaptability enables
the continuous generation of ranking scores across diverse
group allocations. This positions LETOR as a potential av-
enue for synthetic data generation, despite not being origi-
nally conceived for such tasks.

3 Preliminaries
3.1 Dataset
This research utilises a unique dataset from leading UK-
based trading sectors, containing individual trading trans-
actions. The scarcity of real-world financial transaction
datasets, often due to privacy, regulatory, and proprietary
constraints (Hand 2018), makes our dataset particularly
valuable. It provides a rare opportunity to study financial
transaction synthetic data generation in-depth.

The dataset contains 13,607,120 trading records from
November 2003 to July 2014, produced by 20,514 active
traders. Each entry corresponds to an individual trade exe-
cuted by these traders. The dataset is split as follows: 72%
(9,797,100 records) for training, 8% (1,088,580 records) for
validation, and 20% (2,721,440 records) for testing.

There are three feature groups constructed in the dataset:
(1) Behavioural and demographic features of traders, in-
formed by stock exchange dealing desk insights; (2) Past
performance indicators, including a detailed analysis of the
traders’ last 20 trades; and (3) Preferences for specific mar-
kets and channels, identifying patterns in trading choices.
This comprehensive dataset is instrumental in developing
models to detect and analyse risky trading behaviours.

3.2 Task
Building on the aforementioned dataset, our target is to gen-
erate financial transaction data in a task-oriented way. Ac-
cordingly, we select the task for which this dataset for clas-
sifying risky traders in the context of trading and Contracts
for Difference (CFDs) (Kim et al. 2020).

This task is particularly crucial given that these trading
methods contribute significantly to the financial market, with
an estimated 10% of the £1.2 trillion traded annually on the
London Stock Exchange related to such tradings (Ma et al.
2022). Identifying traders who may exploit leverage for sub-
stantial gains, potentially through illegal means such as price
manipulation or insider trading, is crucial for maintaining



market integrity (Kozlov 2014; Hilal, Gadsden, and Yawney
2022). The task is formally defined as follows.

Given a labelled dataset D = {yj , xj}nj=1, each xj de-
notes the feature set of trade j, with n representing the total
trade count. The inherent sparsity of individual trade data
is addressed by associating each trade with its correspond-
ing trader. This association facilitates the enhancement of
feature representation by incorporating information from a
trader’s preceding 20 trades when evaluating trade j.

The primary objective is to determine the hedging strategy
for trade j, which is based on a binary target condition. If the
return from the next hundred trades subsequent to j, denoted
as Returni,j , for a specific trader i is in the top 1%, the binary
target yij is set to 1; otherwise, it is assigned a value of 0.
The return is given by:

Returni,j =

∑
1<k≤100 P&Li,k∑
1<k≤100 Margini,k

Indices i and j respectively represent the trader and trade.
The P&L metric stands for the profit and loss, while the
Margin corresponds to the funds mandated by the market
maker, typically calculated as the product of the stake size
and margin requirement. To determine the label for trade
j, trader i is assessed at the time of the trade’s initiation.
Traders achieving a return exceeding 1% from their sub-
sequent hundred trades are categorised as risky and trades
from these risky traders will be hedged.

4 Methodology
4.1 SynthRank Pipeline
Figure 1 illustrates the procedure of our synthetic finan-
cial transactions generation pipeline. We firstly train a rank-
ing model R on our labelled dataset using random rank-
ing group allocation. To illustrate this, the ranking model,
R, outputs a ranking score si for each input item xi, a d-
dimensional vector, where d represents the feature count.
The equation is as:

R(xi) = si (1)
Then we generate synthetic data based on this ranking model
R. The original dataset is randomly split to G ranking
groups. A trading item xi is broken down into D input items
{xi1,xi2, · · · ,xiD}. Each xij represents the j-th indepen-
dent feature, with all other d − 1 features masked by 0. For
example, xi1 = (xi1, 0, · · · , 0). The ranking model R out-
puts feature-specific ranking scores sij for all xij as:

R(xij) = R((0, · · · , xij , · · · , 0)) = sij (2)

We aggregate all sij to substitute the corresponding features
and generate a synthetic data item E(xi) as:

E(xi) = (si1, si2, · · · , siD) (3)

We repeat this procedure for the chosen original data items
to generate synthetic data. There are two main advantages of
our pipeline.
Flexible and controllable generation. SynthRank exhibits
flexibility, allowing for the generation of data without quan-
tity limitations. While it also maintains controllability, pro-

Figure 1: Illustration of SynthRank pipeline.

viding the capability to generate synthetic data with spe-
cific labels. Since the generation process is based on rank-
ing groups, we can reallocate these groups to generate di-
verse synthetic data items derived from the same original
item xi. The alteration of ranking group allocation can lead
to variations in ranking outputs, yielding distinct synthetic
features. Nonetheless, these modified features can also re-
tain their characteristic properties by preserving relation-
ships with other ranked items. Consequently, there is no gen-
eration quantity limitation, facilitating dynamic augmenta-
tion of our dataset to meet specific requirements. Moreover,
owing to the reliance on original data items in the genera-
tion process, precise control over the synthesis is achievable.
Specifically, it is feasible to extract samples of risky traders
and generate diverse data for the minority class.
Privacy-preserved Generation Inference of sensitive in-
formation from our synthetic data is challenging, providing
security of privacy. When using synthetic data outside the
secure environment, attackers can utilise publicly available
information to infer the protected individual information.
However, this approach is ineffective against our synthetic
data due to the incorporation of two elements of knowledge
intrinsic to our generation process, the ranking group alloca-
tion and the ranking model. Both aspects are concealed from
potential attackers. Despite the existence of inference attack
algorithms (Zhao et al. 2021a), they are difficult to operate
successfully on our synthetic data in the absence of rank-
ing group information. Consequently, it becomes unfeasible
to deduce the original values from our generated synthetic
data. This assertion is substantiated by the results of our pri-



vacy inference attack assessment detailed in Section 5.3.

4.2 LETOR Algorithms Adaptation
To adapt LETOR algorithms into our SynthRank pipeline,
we mainly choose the pairwise and listwise approach.
LETOR algorithms can be categorised into three distinct
types: pointwise, pairwise, and listwise, based on the quan-
tity of considered documents at a time. Due to the inherent
volatility of the market, the returns of trades are affected by
numerous intricate factors, often failing to consistently re-
flect the accurate ranking of trades. Therefore, we allocate
ranking groups with large sizes to pairwise or listwise ap-
proaches, ensuring the stability of training ranking models.

Group allocation plays a critical role in configuring rank-
ing models for SynthRank. During the pretraining phase, we
employed a grouping strategy in two steps: firstly, grouping
traders by markets, and secondly, ensuring the inclusion of
at least one risky trader in each group whenever possible.
This approach aims to enhance the learning of distinctions
between risky and normal traders within each group. For the
generation process, we use random group allocation to en-
sure the diversity of the transaction data generation. The size
of groups serves as a hyperparameter, where finding the right
balance is crucial. Groups that are too small may miss com-
mon characteristics, while overly large groups may overlook
local features. In contrast, when transforming the test set for
predicting risky traders, all the data is assigned to a single
group. This is to ensure the stability of the generated rank-
ing embeddings for the test set.

The specific ranking algorithm we adopt is Lamb-
daMART (can equipped with pairwise and listwise objec-
tive), motivated by recent studies demonstrating its superi-
ority. These studies suggest that LambdaMART, based on
gradient boosted decision trees (GBDT), typically outper-
forms deep learning-based ranking algorithms (Pang et al.
2020; Buyl, Missault, and Sondag 2023). Specifically, for
our implementations, we employ XGBRanker1 from XG-
Boost (Chen and Guestrin 2016) and LGBMRanker2 from
LightGBM (Ke et al. 2017). XGBRanker provides three ob-
jective options: rank:pairwise, rank:ndcg, and rank:map.
In contrast, LGBMRanker exclusively employs the lamb-
darank objective.

4.3 Baselines
In this study, we select TVAE, CTGAN, CopulaGAN, and
REaLTabFormer as our baseline models. This selection en-
compasses models from various time periods and includes a
diverse range of model architectures.

TVAE and CTGAN are two prominent synthetic data
generators that have been shown to outperform traditional
Bayesian networks and other GAN-based generators by the
year 2019 (Xu et al. 2019). Additionally, CopulaGAN, an
advanced version of CTGAN, enhancing its ability to repli-

1https://xgboost.readthedocs.io/en/stable/python/python api.
html\#xgboost.XGBRanker

2https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.
LGBMRanker.html\#lightgbm.LGBMRanker

cate both individual column features and the overall struc-
ture of datasets (Espinosa and Figueira 2023).

Furthermore, our study includes a comparative analysis
of REaLTabFormer (Solatorio and Dupriez 2023), a GPT-2
based model outperforming recent models like Tab-DDPM
(Kotelnikov et al. 2023) and GReaT (Borisov et al. 2023)
in various deep learning architectures. Notably, its effective-
ness was demonstrated using six real-world datasets, includ-
ing a house pricing dataset with financial indicators such as
income, underscoring its applicability in financial contexts.

We employ Synthetic Data Vault (SDV)3, a widely-
recognised open-source library, for implementing TVAE,
CTGAN, and CopulaGAN. For REaLTabFormer4, our ex-
periments are conducted using its official implementation.

For all baseline models, we meticulously specify continu-
ous and categorical features to maximize their performance.
Each model undergoes training for 300 epochs to ensure ad-
equate convergence. Notably, for the CopulaGAN model, we
employ the default “beta” distribution, accommodating a di-
verse range of data shapes.

5 Experiments and Discussions
In our experimental evaluation, we aim to comprehensively
assess the quality of the synthetic transaction data. We de-
sign three distinct experiments that cover the evaluation of
utility, privacy, and similarity aspects of the synthetic data.

5.1 Metrics
Metrics are categorised into three groups for these evalua-
tions: utility, privacy, and similarity, corresponding to three
experiments (Section 5.2 to 5.4).
Utility Metrics: F1, AUC score, P&L Utility of the syn-
thetic data is assessed using a predictive task approach
(see Section 5.2). For prediction performance, we use F1

scores and Area under the ROC Curve (AUC) scores, both
prevalent in prediction tasks, particularly with imbalanced
datasets. Additionally, in the context of transaction data,
where financial outcomes are crucial, we include the Profit
& Loss (P&L) metric calculated as:

P&L =

N∑
i=1

−(1− yi) ∗ NextProfit 20i (4)

In this formula, yi ∈ 0, 1 is the predicted label for each
of the N instances. NextProfit 20 represents the P&L for the
upcoming 20 trades. If yi is 0 (not high-risk), the P&L neg-
atively impacts our total, indicating a loss. If yi is 1 (high-
risk), the P&L is zero due to hedging, meaning no gain or
loss. Transactional costs are not included in this calculation.
Privacy Metric: PAI score Privacy evaluation is conducted
using the Privacy Against Inference (PAI) score5. This met-
ric measures the synthetic data’s resilience against inference
attacks aimed at extracting sensitive information (Choi et al.
2017; Jayaraman and Evans 2019; Yale et al. 2020). The PAI

3https://docs.sdv.dev/sdv/
4https://github.com/worldbank/REaLTabFormer
5https://docs.sdv.dev/sdmetrics/metrics/metrics-in-

beta/privacy-against-inference



score is derived from (1 − Acc), where Acc is the accuracy
of an attacker in inferring true sensitive information. Higher
PAI scores indicate better privacy protection.
Similarity Metrics: KS test, KDE plot, Q-Q Plot For sim-
ilarity assessment, we use the Kolmogorov-Smirnov (KS)
test, kernel density estimate (KDE) plots, and Quantile-
Quantile (Q-Q) plots. The KS test statistically measures how
well the synthetic data matches the original data’s distribu-
tion (Massey 1951). KDE and Q-Q plots provide visual in-
sights into the distributional similarity, offering an intuitive
understanding of how closely the synthetic data resembles
the original.

5.2 Utility Evaluation: Prediction Task
The aims of utility evaluation is to evaluate whether the syn-
thetic transactions can potentially reserve the predictive ac-
curacy in identifying risky traders.

In this experiment, we utilise Random Forest (RF)6 and
Multi-layer Perceptron (MLP)7 classifiers. These classifiers
are trained on the generated synthetic transaction data and
then tested on the original, uninvolved test set, which un-
dergoes necessary feature transformations like standardisa-
tion. While more advanced classifiers exist (Kim et al. 2021;
Chen et al. 2022), their evaluation is beyond this paper’s
scope. Similarly, while various MLP classifier implemen-
tations are available, our focus is not on comparing these
packages but on demonstrating the use of ranking models
for effective synthetic data generation. The impact of dif-
ferent MLP and ML model implementations is outside our
current scope. The results are shown in Table 1.

As detailed in the result table, the original dataset sets a
benchmark with an F1 score of 0.511 and an AUC score of
0.837 for RF, and slightly higher scores for MLP.

Among the baselines, a common challenge observed is
that classifiers struggle to accurately identify risky traders
when trained on generated transaction data. This problem
is especially evident in models like TVAE, as Kiran and
Kumar points out, where they struggle to effectively repre-
sent minority classes. This is a significant issue in financial
transaction data, which commonly exhibits class imbalance
(Mqadi, Naicker, and Adeliyi 2021). Meanwhile, RTF, while
a more recent model, shows potential with AUC scores but
falls short in F1 performance, suggesting areas for improve-
ment in financial transaction data synthesis.

This issue is resolved by our SynthRank, evident by con-
sistent improvement compared to baseline models and the
original data across all the metrics. SynthRank achieves the
highest F1 scores (0.567 for RF and MLP) and notable AUC
scores, with the best P&L values, particularly in the LGBM
configuration. This highlights the superiority of our Syn-
thRank pipeline for generating financial transactions. Syn-
thRank not only retains but potentially enhances the predic-
tive performance for identifying risky traders with excep-
tionally profits, maximising the utility.

6https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

7https://scikit-learn.org/stable/modules/generated/sklearn.
neural network.MLPClassifier.html

Data Source F1 P&L AUC
Results with RF Classifier

Original 0.511 127.738 0.837
Baseline Synthetic Data Generators
TVAE 0.498 127.060 0.732
CTGAN 0.510 127.833 0.781
CopulaGAN 0.499 127.203 0.775
RTF 0.499 127.098 0.824
Our SynthRank Pipelines
LMART(XGB:pair) 0.548 128.185 0.863
LMART(XGB:ndcg) 0.558 128.985 0.849
LMART(XGB:map) 0.567 129.160 0.858
LMART(LGBM) 0.566 131.269 0.857

Results with MLP Classifier

Original 0.522 127.968 0.838
Baseline Synthetic Data Generators
TVAE 0.509 127.539 0.648
CTGAN 0.531 124.721 0.742
CopulaGAN 0.517 125.907 0.729
RTF 0.498 127.131 0.805
Our SynthRank Pipelines
LMART(XGB:pair) 0.543 131.207 0.862
LMART(XGB:ndcg) 0.536 129.858 0.848
LMART(XGB:map) 0.560 128.451 0.845
LMART(LGBM) 0.567 131.547 0.856

Table 1: Performance comparison of RF and MLP models
on the original dataset versus synthetic datasets generated
using different benchmarking models.

5.3 Privacy Evaluation: Privacy Against
Inference Test

While generating financial transaction data, our primary fo-
cus will be on privacy considerations. In other words, we aim
to share a dataset without compromising information about
any specific entity within it (Assefa et al. 2021).

For assessing privacy protection, we employ the PAI Test,
where attackers, equipped with machine learning or deep
learning techniques, gain access to synthetic datasets along-
side specific real index features, the true values of which
are known to them. These attackers, having trained on the
synthetic data, aim to deduce sensitive features in the actual
dataset using the provided information.

In this experiment, we assume attackers with access to
accountid, Period, and MarketCluster attempt to infer sen-
sitive information such as age and transaction size. Specif-
ically, we choose synthetic data generated by SynthRank
with LambdaMART (LGBM) as a representative implemen-
tation. To ensure robustness, we implement three attack-
ers based on various architectures: K-Nearest-Neighbour
(KNN), Random Forest (RF), and Multi-layer Perception
(MLP) models. We also conduct a 10-fold cross-validation
using 10K randomly selected samples from the real data
and the entire synthetic dataset, which contains over 500K
samples per fold. Table 2 presents the privacy evaluation re-
sults for synthetic transactions produced by the benchmark-
ing methods.

The results shows that SynthRank consistently outper-
forms the baseline models across all three attacker mod-



Model RF KNN MLP
TVAE 0.4510 0.5155 0.4414
CTGAN 0.4374 0.5021 0.4311
CopulaGAN 0.4288 0.4850 0.4293
RTF 0.3973 0.1442 0.4324
SynthRank 0.9453 0.9453 0.9117

Table 2: Average PAI scores for synthetic data from baseline
models and SynthRank with LambdaMART (LGBM).

els, achieving scores close to 0.9453 in both KNN and RF,
and around 0.9117 for the MLP model. Contrastingly, other
models like CTGAN, TVAE, CopulaGAN, and RTF demon-
strate varying vulnerabilities. TVAE, with the best perfor-
mance among the baseline models, shows fluctuating PAI
scores between 0.4414 and 0.5021, indicating potential ex-
posure to advanced attacks.

To determine the exact value of PAI score indicating a
strong defense against inference attack, we calculate the ran-
dom guessing threshold. This threshold represents a refer-
ence line above which an attacker’s performance is worse
than random guessing. Since our dataset comprises five
age groups and three segment groups, a random guessing
model assigns a 0.2 and 1/3 probability for predicting each
age group and segment group respectively. The expected
accuracy for such a model, per instance, is calculated as
(0.2+1/3)/2 = 0.2667, regardless of the actual distribution
of these categorical features. Hence, the random guessing
threshold is 1− 0.2667 = 0.7333.

SynthRank exceeds the threshold, which implies that
the generated transaction data offers a stronger privacy re-
silience against information leakage attempts by attackers.
Consequently, when the primary concern is safeguarding
sensitive attributes, SynthRank appears to be a more suitable
choice compared to other baseline models.

5.4 Similarity Evaluation: Statistics and
Visualisation

To thoroughly assess how closely the synthetic transaction
data mirrors original feature distributions, we use both sta-
tistical tests and visual methods. For equitable comparison,
both the original and synthetic data are standardised prior to
subsequent evaluations.

Feature Type TVAE CTGAN CoGAN RTF SynthRank
Continuous 0.188 0.147 0.152 0.129 0.153
Discrete 0.082 0.097 0.145 0.003 0.460
All 0.128 0.119 0.148 0.058 0.326

Table 3: Average KS test statistics of continuous and discrete
features. Notably, “CoGAN” stands for “CopulaGAN”.

KS Test The statistical results are shown in Table 3. A small
KS statistic implies that the two samples are likely drawn
from the same distribution.
KDE Plots Figure 2 provides a visualised comparison for
10 selected features (5 continuous and 5 discrete) due to the
page limit. Each subplot corresponds to a distinct feature,
overlaying the synthetic data distribution over the original
data’s distribution (in red).
Q-Q Plots As illustrated in Figure 3, we selected 10 contin-
uous features, trying to avoid overlap with those presented

in the KDE plots. If the datasets share the same distribution,
the points on the Q-Q plot will align with the line y = x.
Continuous Features Table 3 shows RTF as the strongest
performer in modelling continuous features, with average
KS test statistics of 0.129, indicating a high similarity to the
original dataset. This highlights the effectiveness of RTF in
capturing the distribution of continuous individual’s finan-
cial behaviour. This is visually corroborated by the well-
aligned Q-Q plots of RTF in Figure 3. SynthRank, while
achieving similar performance as CopulaGAN and CTGAN
in KS statistics, exhibits acceptable alignment with the orig-
inal dataset for continuous features.
Discrete Features For discrete features, the transformation
into continuous forms leads to elevated KS statistics for
SynthRank compared to other baselines. Despite this, Syn-
thRank demonstrates its ability to capture the peaks of the
original discrete distributions, as seen in Figure 2. This abil-
ity is particularly relevant in financial contexts where precise
replication of the original distribution is not always essen-
tial, and discrete features often contain sensitive informa-
tion. SynthRank effectively balances data privacy concerns
with the need to mirror distributions.

5.5 Trade-offs implications: Utility, Privacy, and
Similarity

Utility vs. Similarity Given the aforementioned analy-
sis, a critical trade-off can be observed between utility and
feature similarity. RTF, as the latest baseline model, while
achieving high similarity (KS statistic of 0.058), compro-
mises on utility with a lower F1 score (0.498 with the RF
classifier). In contrast, SynthRank enhances utility with an
F1 score up to 0.567 with RF, despite not perfectly repli-
cating every feature distribution, indicating a preferable bal-
ance for predictive accuracy in financial data.

Privacy vs. Similarity Balancing feature similarity and
privacy is challenging. While RTF and CTGAN show high
similarity, they potentially weaken the privacy protection
with PAI score gaps of over 0.4 compared to SynthRank.
Conversely, SynthRank, with a moderate similarity (average
KS statistic of 0.326), significantly improves privacy preser-
vation (PAI scores > 0.9 against all the attackers), represent-
ing a strategic balance in protecting sensitive information.

Utility vs. Privacy SynthRank demonstrates an excep-
tional balance between utility and privacy. It prioritises pri-
vacy security without compromising on predictive utility,
making it highly suitable for financial transaction data. It
combines strong privacy measures (evidenced by high PAI
scores) with high predictive utility (up to 0.567 F1 score with
the MLP classifier), addressing the critical need for both data
protection and predictive accuracy in financial contexts.

6 Conclusion and Future Work
In conclusion, this study marks the first attempt towards us-
ing learning-to-rank algorithms for the generation of syn-
thetic financial transaction data. By re-envisioning the syn-
thetic data generation paradigm, we strategically prioritise a



Figure 2: KDE Plots of 10 Selected Features from Original and Synthetic Datasets.

Figure 3: Q-Q Plots for Original vs. Synthetic Datasets Generated by benchmarking models on 10 Selected Continuous Features.

task-oriented synthetic data generation. Therefore, we intro-
duce the ranking embeddings, which emerged as a potent so-
lution in amplifying predictive capabilities. Empirical evalu-
ations underscored the merit of this strategy, as evidenced by
the enhanced efficacy in predicting the top 1% risky traders.

Additionally, our findings shed light on an interesting ob-
servation: while the synthetic data produced using ranking
models might not exactly mirror the original distribution, it
remarkably preserves pivotal characteristics. This assertion
is substantiated by comprehensive statistical assessments
that showcased the synthetic data’s fidelity to the original,
especially in capturing underlying trends and patterns.

Moreover, in the context of financial transaction data,
which often contains sensitive information, ranging from
personal identifiers to transactional specifics, the priority
shifts towards ensuring privacy and utility. By obfuscat-
ing these sensitive facets, our SynthRank approach aligns
with this requirement. Its ability to provide accurate predic-
tions while securing sensitive data positions it as a preferred
choice in this scenario. Therefore, while statistical similar-
ity is a key metric, it should be balanced with task-specific
needs and privacy considerations in financial applications.

Moving forward, we observe the absence of domain-
specific insights in our approach. While the predictor
achieves the highest F1, it might not guarantee to maximise

P&L at the same time. Our future work will focus on refining
the ranking models and infusing them with domain-specific
knowledge to bridge this gap.

Furthermore, while we have proposed an innovative ap-
proach to synthetic data generation that goes beyond merely
replicating the original data distribution, it’s important to ac-
knowledge that LETOR algorithms may just be a stepping
stone in this journey. There’s a vast landscape of methodolo-
gies awaiting exploration, and future research should remain
open to alternative techniques that could provide enhanced
robust and privacy-preserving synthetic datasets.
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