kground	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
DOO	000	00000000	00000000	0000

SynthRank: Synthetic Data Generation of Individual's Financial Transactions Through Learning to Ranking

Waylon Li¹, Mengyu Wang¹, Carsten Maple^{2,3}, Tiejun Ma^{1,3}

¹University of Edinburgh ²University of Warwick ³The Alan Turing Institute

Bac

The Alan Turing Institute

Background 00000	Dataset & Task 000	Methodology: SynthRank	Experiments 0000000	Conclusion

- 2 Dataset & Task
- **3** Methodology: SynthRank

4 Experiments

5 Conclusions

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
●0000	000	000000000	00000000	0000

- 2 Dataset & Task
- 3 Methodology: SynthRank
- **4** Experiments
- **6** Conclusions

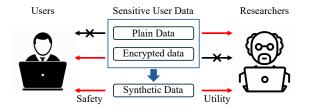
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

Why Synthetic Data For Financial Transactions?



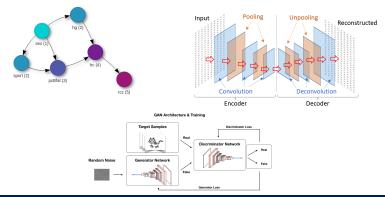
In the finance sector, significant constraints exist in accessing data both within and across organisations, since the data usually contains sensitive information including personal detail, which preclude it being shared.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00●00	000		00000000	0000

Previous Work

Three predominant generative models for tabular data:

- Bayesian Networks
- Auto-Encoders
- Generative Adversarial Networks (GANs)

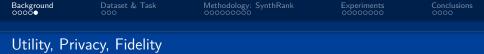


SynthRank: Synthetic Data Generation of Individual's Financial Transactions Through Learning to Ranking

Background	Dataset & Task	Methodology: SynthRank	Experiments	0
000●0	000	00000000	00000000	

However...

However, some recent generation methods struggled to achieve the balance or lack a comprehensive assessment of privacy, utility, and fidelity [4].



- Utility: How helpful it is for a specific task [3].
- **Privacy:** How much it reveals about the actual data it's based on [3].
- Fidelity: How closely the synthetic data matches the real data in terms of patterns [3].

Target: prioritise utility and privacy.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	●00		00000000	0000

2 Dataset & Task

3 Methodology: SynthRank

4 Experiments

6 Conclusions

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	0●0	000000000	0000000	0000

Dataset

A unique dataset from leading UK-based trading sectors, containing individual trading transactions.

- 13,607,120 trading records from November 2003 to July 2014.
- 20,514 active traders.
- Binary Classification (risky / non-risky)

Background	
00000	

Dataset

The following table shows the features in the trasactions dataset:

Feature	Description	Feature	Description			
Continuous Features						
PerFTSE20	Share of trades placed in the FTSE100	ProfitxDur20	Interaction of ProfitRate20 and DurationRate20			
AVGPTS3_20	P&L in Points \geq 3 during the last 20 trades	PassAvgReturn	Avg. return			
ProfitRate20	Average profit rate of the trader in the past 20 trades	AvgShortSales20	Share of short positions in the past 20 trades			
WinTradeRate20	Trader's average winning rate in the past 20 trades	DurationRate20	Average time trader leaves winning vs losing position open			
SharpeRatio20	Mean/st.dev. of returns in the past 20 trades	AvgOpen20	Average of the P&L among trader's past 20 trades			
DurationRatio20	Mean trade duration (mins) / std.dev. duration of past 20 trades	OrderCloseRate20	% of trades closed by an order in the last 20 trades			
TradFQ20	The number of trades on average that a typical trader poses daily	NumTrades	Accumulated until the last 20 trades			
NextTotalPL_GBP20	P&L for the next 20 trades in the future	NextTotalPL_GBP	P&L for the next 100 trades in the future			
WinningRate	Winning rate of the next 100 trades in the future	SharpNext100	Mean/st.dev. of the returns of trader's next 100 trades			
TotalTrades	Total trades made by a trader	Period	Buckets of 20 trades per account			
	Discrete Fea	tures	· · · · · · · · · · · · · · · · · · ·			
Age1	Indicate which age group the trader belongs to	MarketCluster5	Indicate which market cluster the stock belongs to			
Age2	Indicate which age group the trader belongs to	MarketCluster6	Indicate which market cluster the stock belongs to			
Age3	Indicate which age group the trader belongs to	MarketCluster7	Indicate which market cluster the stock belongs to			
Age4	Indicate which age group the trader belongs to	MarketCluster8	Indicate which market cluster the stock belongs to			
Age5	Indicate which age group the trader belongs to	Segment1	Categories of past 20 trades' average return			
Mobile	Indicate what device the trade is made from	Segment2	Categories of past 20 trades' average return			
MarketCluster0	Indicate which market cluster the stock belongs to	Segment3	Categories of past 20 trades' average return			
MarketCluster2	Indicate which market cluster the stock belongs to	accountid	The account ID of the trader			
MarketCluster3	Indicate which market cluster the stock belongs to					

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	●00000000	00000000	0000

2 Dataset & Task

3 Methodology: SynthRank

4 Experiments

6 Conclusions

Conclusions

LEarning-TO-Rank (LETOR) for Generation

Two things needed for ranking models:

- Ranking group (known as *qid* in information retrieval) is crucial as items are ranked within their group. This is also our motivation for introducing ranking algorithm for the problem.
- A ranking label is required for each item. We can directly use the risky trader label as a binary relevance label, similar to those in retrieval datasets.

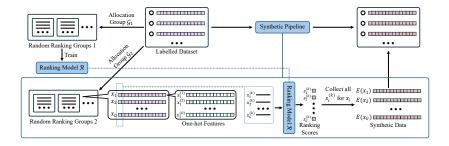
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

LEarning-TO-Rank (LETOR) for Generation



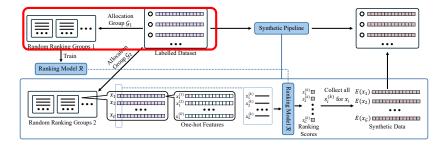
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

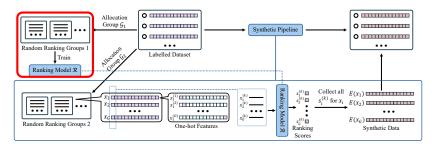
LEarning-TO-Rank (LETOR) for Generation



Step 1: Allocate the trading items using a ranking group allocation strategy G_1 , where the trading items are allocated into a branch of buckets with size G.

ackground	Dataset & Task	Methodology: SynthRank	Experiments
0000	000	000000000	

LEarning-TO-Rank (LETOR) for Generation



Step 2: Train a ranking model \mathcal{R} on a grouped and labelled dataset. During training, the model predicts ranking scores (s_1, \ldots, s_G) for a group of items $\{x_1, \ldots, x_G\}$, where each item is a *d*-dimensional vector representing *d* features. Here, *G* is the group size and s_i is a real-valued score.

$$\mathcal{R}(\{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_G\} \mid \mathcal{G}_1) \rightarrow [\boldsymbol{s}_1,\ldots,\boldsymbol{s}_G]$$
(1)

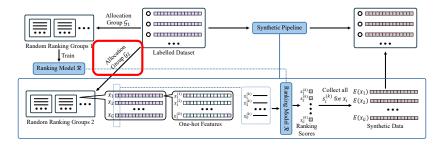
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

LEarning-TO-Rank (LETOR) for Generation



Step 3: During generation, given a subset or the complete training set, we allocate the trading items using the same strategy used for training, but with different random seeds, following the group size G. The original dataset is split into ranking groups with size G using the group allocation \mathcal{G}_2 .

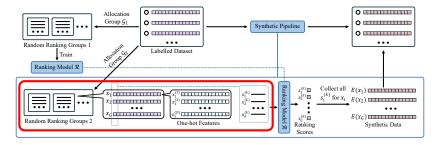
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

LEarning-TO-Rank (LETOR) for Generation



Step 4: A trading item \mathbf{x}_i is broken down into D input items $\{\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}, \dots, \mathbf{x}_i^{(D)}\}$, where each $\mathbf{x}_i^{(j)}$ represents the vector with all other d-1 features except the *j*-th feature being masked by 0.

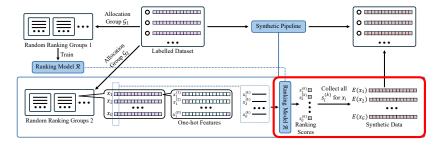
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

LEarning-TO-Rank (LETOR) for Generation

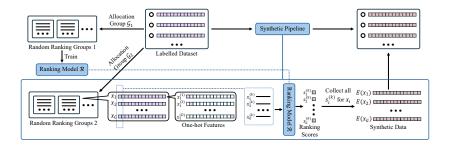


Step 5: We run the ranking model for D times, denoting each separate run as \mathcal{R}_i to obtain feature-specific ranking scores:

$$\mathcal{R}_{j}(\{\boldsymbol{x}_{1}^{(j)},\ldots,\boldsymbol{x}_{G}^{(j)}\} \mid \mathcal{G}_{2}) = (\boldsymbol{s}_{1j},\ldots,\boldsymbol{s}_{Gj})$$
(2)

Background 00000			Co

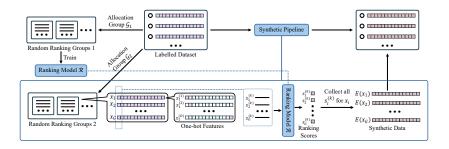
LEarning-TO-Rank (LETOR) for Generation



• **Utility:** the ranking score embedding directly helps with the prediction task. It also offers flexibility where different ranking group allocation can lead to variations in ranking outputs.

Background		Experiments 0000000	Co

LEarning-TO-Rank (LETOR) for Generation



- **Utility:** the ranking score embedding directly helps with the prediction task. It also offers flexibility where different ranking group allocation can lead to variations in ranking outputs.
- **Privacy:** two elements of knowledge are intrinsic to our generation process, the ranking group allocation and the ranking model, which are concealed from attackers.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	00000000	●0000000	0000

2 Dataset & Task

3 Methodology: SynthRank

4 Experiments

6 Conclusions

Background	
00000	

Benchmark Models

Auto Encoder:

• TVAE (2019) [6]

GANs:

- CTGAN (2019) [6]
- CopulaGAN (2023) [2]

GPT:

• REaLTabFormer (2023) [5]

Ours:

• SynthRank (with LambdaMART [1])

Background	
00000	

Evaluation Design

Utility:

Predictive power test

Privacy:

• Attribute Inference Attack (AIA)

Fidelity:

- Kolmogorov-Smirnov (KS) test statistics
- Kernel Density Estimate (KDE) plots
- Quantile-Quantile (Q-Q) plots

Background	
00000	

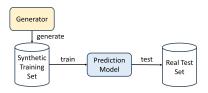
Methodology: SynthRank

Experiments

Conclusions

Utility Results

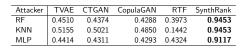
Data Source	F_1	P&L	AUC
Results w	ith RF C	lassifier	
Original	0.511	127.738	0.837
Baseline Synthetic D.	ata Gene	rators	
TVAE	0.498	127.060	0.732
CTGAN	0.510	127.833	0.781
CopulaGAN	0.499	127.203	0.775
RTF	0.499	127.098	0.824
Our SynthRank Pipel	lines		
LMART(XGB:pair)	0.548	128.185	0.863
LMART(XGB:ndcg)	0.558	128.985	0.849
LMART(XGB:map)	0.567	129.160	0.858
LMART(LGBM)	0.566	131.269	0.857
Results wit	h MLP (Classifier	
Original	0.522	127.968	0.838
Baseline Synthetic D.	ata Gene	rators	
TVAE	0.509	127.539	0.648
CTGAN	0.531	124.721	0.742
CopulaGAN	0.517	125.907	0.729
RTF	0.498	127.131	0.805
Our SynthRank Pipel	lines		
LMART(XGB:pair)	0.543	131.207	0.862
LMART(XGB:ndcg)	0.536	129.858	0.848
LMART(XGB:map)	0.560	128.451	0.845
LMART(LGBM)	0.567	131.547	0.856

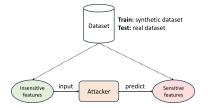


- REaLTabFormer, while a more recent model, falls short in F1 performance.
- SynthRank shows consistent improvement with different implementations of LambdaMART.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	0000●000	0000

Privacy Results





 The PAI score is derived from (1 - Acc), where Acc is the accuracy of an attacker in inferring true sensitive information.

Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

Fidelity Results - KS Test

Feature Type	TVAE	CTGAN	CoGAN	RTF	SynthRank
Continuous	0.188	0.147	0.152	0.129	0.153
Discrete	0.082	0.097	0.145	0.003	0.460
All	0.128	0.119	0.148	0.058	0.326

- REaLTabFormer is the strongest performer in replicating the feature distributions.
- SynthRank achieves similar performance as CopulaGAN and CTGAN on continuous features, but fall shorts on discrete features due to the transformation into continuous forms.

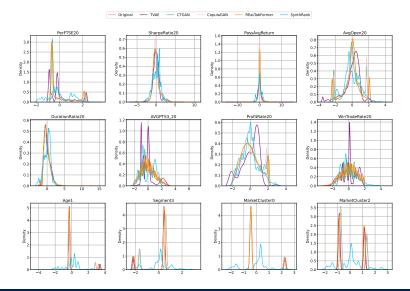
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

Fidelity Results - KDE Plot



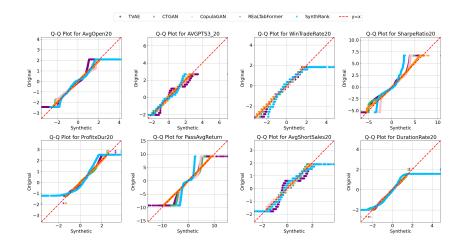
Background	
00000	

Methodology: SynthRank

Experiments

Conclusions

Fidelity Results - QQ Plot



Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	00000000	●000

- 2 Dataset & Task
- 3 Methodology: SynthRank

4 Experiments

5 Conclusions

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	0000000	0●00
Conclusions				

• The first attempt towards using learning-to-rank algorithms for the generation of synthetic financial transaction data.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	00000000	○●○○
Conclusions				

- The first attempt towards using learning-to-rank algorithms for the generation of synthetic financial transaction data.
- We introduce SynthRank, a task-oriented pipeline for synthetic financial transaction data generation.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	0000000	○●○○
Conclusions				

- The first attempt towards using learning-to-rank algorithms for the generation of synthetic financial transaction data.
- We introduce SynthRank, a task-oriented pipeline for synthetic financial transaction data generation.
- Our findings shed light on an interesting observation: while not exactly mirror the original distribution, SynthRank remarkably preserves pivotal characteristics.

Background	Dataset & Task	Methodology: SynthRank	Experiments	Conclusions
00000	000	000000000	00000000	○●○○
Conclusions				

- The first attempt towards using learning-to-rank algorithms for the generation of synthetic financial transaction data.
- We introduce SynthRank, a task-oriented pipeline for synthetic financial transaction data generation.
- Our findings shed light on an interesting observation: while not exactly mirror the original distribution, SynthRank remarkably preserves pivotal characteristics.
- In the context of financial transaction data, SynthRank provides accurate predictions while securing sensitive information, making it as a preferred choice in this scenario.

Background	
00000	

References

- BURGES, C. From ranknet to lambdarank to lambdamart: An overview. *Learning* 11 (01 2010).
- [2] ESPINOSA, E., AND FIGUEIRA, A. On the quality of synthetic generated tabular data. *Mathematics* 11, 15 (2023).
- [3] JORDON, J., SZPRUCH, L., HOUSSIAU, F., BOTTARELLI, M., CHERUBIN, G., MAPLE, C., COHEN, S. N., AND WELLER, A. Synthetic data – what, why and how?, 2022.
- [4] RAM MOHAN RAO, P., MURALI KRISHNA, S., AND SIVA KUMAR, A. P. Privacy preservation techniques in big data analytics: a survey. *Journal of Big Data* 5, 1 (Sep 2018), 33.
- [5] SOLATORIO, A. V., AND DUPRIEZ, O. Realtabformer: Generating realistic relational and tabular data using transformers, 2023.
- [6] XU, L., SKOULARIDOU, M., CUESTA-INFANTE, A., AND VEERAMACHANENI, K. Modeling Tabular Data Using Conditional GAN. Curran Associates Inc., Red Hook, NY, USA, 2019.

Dataset & Task

Methodology: SynthRank 00000000 Experiments

Conclusions

Thanks!

Contact:

- Waylon Li (waylon.li@ed.ac.uk)
- Mengyu Wang (M.Wang-100@sms.ed.ac.uk)
- Prof. Carsten Maple (cm@warwick.ac.uk)
- Prof. Tiejun Ma (tiejun.ma@ed.ac.uk)

The Alan Turing Institute