

TSPRank: Bridging Pairwise and Listwise Methods with a Bilinear Travelling Salesman Model

Waylon Li¹

Yftah Ziser²

Yifei Xie¹

Shay Cohen¹

Tiejun Ma¹

¹University of Edinburgh

²Nvidia Research

Artificial Intelligence and its Applications Institute

Institute for Language, Cognition and Computation

Table of Content

- Motivation
- Methodology
- Experiments & Results
- Conclusion & Future Work

- Motivation
 - Limitations of pairwise and listwise methods
 - Similarity between ranking and travelling salesman problem (TSP)
- Methodology
- Experiments & Results
- Conclusion & Future Work

Limitations of pairwise and listwise methods

- Robust (usually GBDT-based)
- X Not optimized on list level, leading to sub-optimal results [2]

Typical representative: LambdaMART [1]

- ✓ Capture the list-level information, optimized for listwise order
- Less robust and require complex tuning to achieve marginal gains over pairwise models like LambdaMART on information retrieval benchmarks [3]

Typical representative: deep learning based (SetRank [4], Rankformer [5])

Question: Is it possible to combine the advantages of both pairwise and listwise methods?

Predicting the order of a list is challenging because ranking N entities from 1 to N is complex. However, breaking it down into $(N \times N)$ pairwise comparisons simplifies the task, as each pairwise comparison is more straightforward than ranking the entire list.

- Motivation
- Methodology
 - Travelling salesman problem
 - Rethink pairwise ranking in a graph
 - TSPRank
 - Local learning & global learning
- Experiments & Results
- Conclusion & Future Work

Travelling salesman problem (TSP)

Given a list of cities and the distances between each pair of cities, what is the <u>shortest possible</u> <u>route</u> that visits each city <u>exactly once</u> and returns to the origin city? It is an <u>NP-hard</u> problem in combinatorial optimization, important in theoretical computer science and operations research.

Adapted from https://www.linkedin.com/pulse/travelingsales man-problem-14-different-solutions-sandeep-kella/

Rethink pairwise ranking in a graph...

Does this look familiar?

We consider ranking as a TSP where the traveller does not go back to the start point at the end. It is also referred as the <u>Open-Loop TSP</u>.

TSPRank: A generic ranking model for existing backbone encoders

As the TSP solver is discrete, it does not produce gradients for backpropagation.

Local Learning & Global Learning

Local Learning (weighted cross-entropy)

Objective: determine if entity e_i should be ranked one position after e_i in a given pair of entities.

$$\mathcal{L}_{local}(A^{p}, A^{t}) = -\sum_{i=1}^{N} y_{k} \log \frac{e^{A_{ik}^{p}}}{\sum_{j=1}^{N} e^{A_{ij}^{p}}}, \ k = \arg \max_{j} A_{ij}^{t}$$

Local Learning

- A^P : predicted pairwise scores matrix (adjacency matrix).
- A^t : ground-truth adjacency matrix.
- y_k : weighted term, true ordinal ranking for the true consecutive entity after entity i. (penalties vary based on the actual ranking positions)
- N: number of ranking entities in the list.

Note: y_k can be adjusted to $N+1-y_k$ depending on whether y_k represents ascending or descending order.

Global Learning (end-to-end, max-margin)

Objective: incorporating the TSP solver in the training procedure to better align the model with the inference process. **Global Learning**

$$\mathbf{x}^{t} \cdot A^{p} \geq \mathbf{x} \cdot A^{p} + \Delta(\mathbf{x}^{t}, \mathbf{x}), \text{ for all } \mathbf{x},$$

$$\mathcal{L}_{glob}(A^{p}, \mathbf{x}^{t}) = \max(0, \max_{\mathbf{x} \neq \mathbf{x}^{t}} [\Delta(\mathbf{x}, \mathbf{x}^{t}) + \mathbf{x} \cdot A^{p}] - \mathbf{x}^{t} \cdot A^{p})$$

$$\Delta(\mathbf{x}, \mathbf{x}^{t}) = \sum_{i=1}^{N} \sum_{j=1}^{N} \max(0, x_{ij} - x_{ij}^{t})$$

- A^P : predicted pairwise scores matrix (adjacency matrix).
- x^t : target decision variables. x: predicted decision variables. $x_{ij} = \begin{cases} 1, & \text{if entity } \mathbf{e}_j \text{ is ranked immediately after } \mathbf{e}_i, \\ 0, & \text{otherwise.} \end{cases}$
- Δ : enforce a margin for each incorrectly identified edge.

Local Learning vs. Global Learning

Local learning:

- Weighted cross entropy
- Greedily modelling $P(e_i \mid e_i)$

Global learning:

- Max-margin
- End-to-end. Use the output from the discrete TSP solver to guide the training procedure

- Background
- Motivation
- Methodology
- Experiments & Results
 - Datasets and benchmark models
 - Results
 - Visualisation analysis
- Conclusion & Future Work

Dataset

- Stock Ranking: introduced by Feng et al. [7], which includes historical trading data from 2013 to 2017 for NASDAQ and NYSE.
- Information Retrieval: MQ2008list [8] from Microsoft.

• Event Ordering: "On This Day 2" (OTD2) [9]

Task

 Rank next day stocks in the same sector and choose the top-K to invest.

 Rank a list of documents based on their technical indicators.

 Event Ordering: chronologically ordering historical events given their text embeddings.

Benchmark Models

We choose the SOTA generic pairwise and listwise algorithms (not specifically tailored for any task).

LambdaMART [1] (pairwise, GBDT-based)

Rankformer [5] (listwise, transformer-based)

Metrics

Financial metrics

- IRR@K: investment return ratio of investing the top K stocks.
- SR@K: sharpe ratio of investing the top K stocks.

Ranking metrics

- MAP@K: mean average precision at K.
- Kendall's tau (τ): a statistical measure evaluating the correlation between two ordinal rankings.
- MRR: mean reciprocal rank of the true top entity.
- NDCG@K: normalized discounted cumulative gain at K, measuring ranking quality.

Other metrics

- RMSE: root mean squared error.
- EM: exact match rate.

Results: Stock Ranking

Market	Model	τ	IRR@1	SR@1	MAP@1	IRR@3	SR@3	MAP@3	IRR@5	SR@5	MAP@5
NASDAQ	Feng et al. + MLP (Original)	0.0093	0.1947	0.5341	0.1690	0.2366	0.9881	0.3253	0.1892	0.9682	0.5871
	Feng et al. + LambdaMART	0.0071	0.0310	-0.0873	0.1539	0.0340	0.0445	0.3144	0.0505	0.2678	0.5858
	Feng et al. + Rankformer	0.0110	0.2257	0.5464	0.1620	0.2857	1.1245	0.3216	0.2309	1.0943	0.5860
	Feng et al. + TSPRank-Local	0.0291	0.5353	1.2858	0.1658	0.4416	1.7401	0.3297	0.2537	1.2623	0.5932
	Feng et al. + TSPRank-Global	0.0447	0.7849	1.7471	0.1633	0.5224	2.0359	0.3364	0.2937	1.4331	0.5999
	Feng et al. + MLP (Original)	0.0162	0.4170	1.0755	0.1791	0.2574	1.2367	0.2841	0.2257	1.3186	0.4649
	Feng et al. + LambdaMART	0.0054	0.1005	0.1367	0.1307	0.0732	0.4192	0.2592	0.1063	0.6882	0.4574
NYSE	Feng et al. + Rankformer	0.0181	0.2924	0.9113	0.1535	0.2701	1.2890	0.2758	0.2515	1.4200	0.4651
	Feng et al. + TSPRank-Local	0.0313	0.5012	1.5710	0.1424	0.3974	1.9735	0.2756	0.2788	1.6662	0.4680
	Feng et al. + TSPRank-Global	0.0422	0.4787	1.4552	0.1392	0.3889	1.9976	0.2756	0.2816	1.7350	0.4732

Table 1: Performance comparison of Feng et al., LambdaMART, Rankformer, and TSPRank on the NASDAQ and NYSE stock ranking dataset, averaged across all filtered sectors.

Results: Information Retrieval & Historical Events Ordering

				Top 10	Top 30						
Model	Type	NDCG@3	NDCG@5	NDCG@10	MRR	τ	NDCG@3	NDCG@5	NDCG@10	MRR	τ
LambdaMART	Pairwise	0.6833	0.7222	0.8707	0.4259	0.1474	0.7340	0.7298	0.7403	0.3617	0.2372
Rankformer	Listwise	0.7220	0.7565	0.8865	0.4661	0.2317	0.7486	0.7470	0.7596	0.3732	0.2834
TSPRank-Local	Pairwise-Listwise	0.6858	0.7213	0.8719	0.4266	0.1544	0.7189	0.7240	0.7362	0.3206	0.2054
TSPRank-Global	Pairwise-Listwise	0.7281	0.7585	0.8884	0.4861	0.2212	0.7582	0.7558	0.7631	0.3895	0.2647

Table 2: Evaluation of LambdaMART, Rankformer, and TSPRank on MQ2008-list information retrieval dataset for top 10 and top 30 documents.

Group Size		10			30		30)		50			
Model	Туре	<i>τ</i> ↑	ЕМ↑	MRR ↑	RMSE↓	$\tau \uparrow$	ЕМ↑	MRR ↑	RMSE↓	$\tau\uparrow$	ЕМ↑	MRR ↑	RMSE ↓
te-3-small + LambdaMART	Pairwise	0.6297	0.3008	0.7554	1.993	0.5929	0.1064	0.6122	5.969	0.6000	0.0639	0.5596	9.618
te-3-small + Rankformer	Listwise	0.6190	0.2899	0.7361	1.998	0.5859	0.0921	0.4911	5.973	0.5724	0.0527	0.3526	10.069
te-3-small + TSPRank-Local	Pairwise-Listwise	0.5658	0.2856	0.7679	2.296	0.5095	0.0873	0.5739	6.930	0.4713	0.0460	0.3949	12.084
te-3-small + TSPRank-Global	Pairwise-Listwise	0.6301	0.3350	0.7936	2.057	0.6302	0.1384	0.7300	5.770	0.6207	0.0871	0.6618	9.602

Table 3: Evaluation of LambdaMART, Rankformer, and TSPRank on OTD2 dataset for historical events ordering for group sizes of 10, 30, and 50. "te-3-small" stands for "text-embedding-3-small".

Visualisation Analysis

Purpose: empirically explore why TSPRank-Global performs better.

We use the OTD2 dataset as the starting point as textual data is more interpretable.

We arbitrarily sample 3 events each from the US, UK, and China.

Event Title	Year	Rank	Label
1st US store to install electric lights, Philadelphia	1878	3	US-1
1st sitting US President to visit South America, FDR in Colombia	1934	5	US-2
75th US Masters Tournament, Augusta National GC: Charl Schwartzel of South Africa birdies the final 4 holes to win his first major title, 2 strokes ahead of Australian pair Adam Scott and Jason Day	2011	8	US-3
Charles Watson-Wentworth, 2nd Marquess of Rockingham, becomes Prime Minister of Great Britain	1782	2	UK-1
1st main line electric train in UK (Liverpool to Southport)	1904	4	UK-2
UK Terrorism Act 2006 becomes law	2006	7	UK-3
A Mongolian victory at the naval Battle of Yamen ends the Song Dynasty in China	1279	1	CN-1
US Senate rejects China People's Republic membership to UN	1953	6	CN-2
China's Hubei province, the original center of the coronavirus COVID-19 outbreak eases restrictions on travel after a nearly two-month lockdown	2020	9	CN-3

Table 4: Event titles in the constructed group. Labels indicate the order of occurrence within each country, e.g., "US-1" denotes the earliest event in the US within the group.

THE UNIVERSITY of EDINBURGH

Event Title	Year	Rank	Label
1st US store to install electric lights, Philadelphia	1878	3	US-1
1st sitting US President to visit South America, FDR in Colombia	1934	5	US-2
75th US Masters Tournament, Augusta National GC: Charl Schwartzel of South Africa birdies the final 4 holes to win his first major title, 2 strokes ahead of Australian pair Adam Scott and Jason Day	2011	8	US-3
Charles Watson-Wentworth, 2nd Marquess of Rockingham, becomes Prime Minister of Great Britain	1782	2	UK-1
1st main line electric train in UK (Liverpool to Southport)	1904	4	UK-2
UK Terrorism Act 2006 becomes law	2006	7	UK-3
A Mongolian victory at the naval Battle of Yamen ends the Song Dynasty in China	1279	1	CN-1
US Senate rejects China People's Republic membership to UN	1953	6	CN-2
China's Hubei province, the original center of the coronavirus COVID-19 outbreak eases restrictions on travel after a nearly two-month lockdown	2020	9	CN-3

Table 4: Event titles in the constructed group. Labels indicate the order of occurrence within each country, e.g., "US-1" denotes the earliest event in the US within the group.

Figure 2: Visualisation of predictions by LambdaMART, Rankformer, and TSPRank-Global on the constructed group. Numbers in parentheses indicate the true ranking.

Figure 3: Illustration of the intra-country pairwise comparison graph. Edges between pairs of events from different countries are omitted for clarity. Scores highlighted in red indicate errors in the pairwise prediction for TSPRank-Global.

- Background
- Motivation
- Methodology
- Experiments & Results
- Conclusion & Future Work

Conclusion: Main Findings

- Better Performance of TSPRank, which is a hybrid method, across diverse tasks.
- Global learning outperforms local learning.
- GBDT-based pairwise ranking method does not always outperform deep learning based listwise ranking method as indicated by existing literatures.
- With the help of the listwise optimisation provided by the TSP solver, TSPRank is more tolerant to errors and uncertainties in pairwise comparisons.

Future Work

99.8% of the inference time is consumed by the discrete TSP solver.

- ⇒ Currently suitable for small-scale ranking problems such as the reranking stage in information retrieval, etc.
- ⇒ Future work can be replacing the Gurobi TSP solver by other heuristic algorithms or NN-based TSP solvers.

- [1] Burges, C.J., 2010. From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23-581), p.81.
- [2] Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F. and Li, H., 2007, June. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on Machine learning (pp. 129-136).
- [3] Qin, Z., Yan, L., Zhuang, H., Tay, Y., Pasumarthi, R.K., Wang, X., Bendersky, M. and Najork, M., 2021, May. Are neural rankers still outperformed by gradient boosted decision trees?. In International conference on learning representations.
- [4] Pang, L., Xu, J., Ai, Q., Lan, Y., Cheng, X. and Wen, J., 2020, July. Setrank: Learning a permutation-invariant ranking model for information retrieval. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (pp. 499-508).
- [5] Buyl, M., Missault, P. and Sondag, P.A., 2023, August. Rankformer: Listwise learning-to-rank using listwide labels. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 3762-3773).
- [7] Feng, F., He, X., Wang, X., Luo, C., Liu, Y. and Chua, T.S., 2019. Temporal relational ranking for stock prediction. ACM Transactions on Information Systems (TOIS), 37(2), pp.1-30.
- [8] https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/letor-4-0/
- [9] https://github.com/ltorroba/machine-reading-historical-events

More details...

Poster:

#195 Exhibit Hall F, Tuesday, August 5, 5:30 - 8:00 PM

Email:

waylon.li@ed.ac.uk

1. Choose and setup the TSP solver.

- x_{ij} : decision variable.
- s_{ij} : $s(e_i, e_j)$
- *N*: the total number of entities to be ranked.
- z_i : the number of entities ranked before entity i.

$$x_{ij} = \begin{cases} 1, & \text{if entity } \mathbf{e}_j \text{ is ranked immediately after } \mathbf{e}_i, \\ 0, & \text{otherwise.} \end{cases}$$

Objective function:

$$\max_{x_{ij}} \quad \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} s_{ij} x_{ij}$$

Constraints:

s.t.
$$\sum_{j=1, j\neq i}^{N} x_{ij} \le 1 \quad \text{for all } i$$

$$\sum_{i=1, i \neq j}^{N} x_{ij} \le 1 \quad \text{ for all } j$$

$$\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} x_{ij} = N - 1$$

$$z_i + 1 \le z_j + N(1 - x_{ij})$$
 $i, j = 2, ..., N, i \ne j$
 $z_i \ge 0$ $i = 2, ..., N$

- 1. Choose and setup the TSP solver.
- x_{ij} : decision variable.
- s_{ij} : $s(e_i, e_j)$

N: the total number of entities tobe ranked.

• z_i : the number of entities ranked before entity i.

$$\max_{x_{ij}} \quad \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} s_{ij} x_{ij}$$

Each entity has at most one predecessor and one successor in the ranking

s.t.
$$\sum_{j=1, j \neq i}^{N} x_{ij} \le 1 \quad \text{for all } i$$
$$\sum_{i=1, i \neq j}^{N} x_{ij} \le 1 \quad \text{for all } j$$

$$\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} x_{ij} = N - 1$$

$$z_i + 1 \le z_j + N(1 - x_{ij})$$
 $i, j = 2, ..., N, i \ne j$
 $z_i \ge 0$ $i = 2, ..., N$

- 1. Choose and setup the TSP solver.
- x_{ij} : decision variable.
- s_{ij} : $s(e_i, e_j)$
- *N*: the total number of entities tobe ranked.
- z_i : the number of entities ranked before entity i.

$$\max_{x_{ij}} \quad \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} s_{ij} x_{ij}$$

s.t.
$$\sum_{j=1, j \neq i}^{N} x_{ij} \le 1 \quad \text{ for all } i$$

Ensures that the total number of pairwise comparisons is exactly N-1 (open-loop).

$$\sum_{i=1, i\neq j}^{N} x_{ij} \le 1 \quad \text{ for all } 2$$

$$\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} x_{ij} = N - 1$$

$$z_i + 1 \le z_j + N(1 - x_{ij})$$
 $i, j = 2, ..., N, i \ne j$
 $z_i \ge 0$ $i = 2, ..., N$

- 1. Choose and setup the TSP solver.
- x_{ij} : decision variable.
- s_{ij} : $s(e_i, e_j)$
- *N*: the total number of entities tobe ranked.
- z_i : the number of entities ranked before entity i.

Introduce variables z to eliminate multiple separate sequences (subtours) and enforce that there is a single, complete ranking that includes all entities. $\sqrt{z+1} < z$.

$$\max_{x_{ij}} \quad \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} s_{ij} x_{ij}$$

s.t.
$$\sum_{j=1, j \neq i}^{N} x_{ij} \le 1 \quad \text{for all } i$$

$$\sum_{i=1, i \neq j}^{N} x_{ij} \le 1 \quad \text{ for all } j$$

$$\sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} x_{ij} = N - 1$$

$$z_i + 1 \le z_j + N(1 - x_{ij})$$
 $i, j = 2, ..., N, i \ne j$
 $z_i \ge 0$ $i = 2, ..., N$