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Limitations of pairwise and listwise methods

Robust (usually GBDT-based) 
Not optimized on list level, leading to sub-optimal results [2]

Typical representative: LambdaMART [1]

Capture the list-level information, optimized for listwise order 
Less robust and require complex tuning to achieve marginal gains 

over pairwise models like LambdaMART on information retrieval 
benchmarks [3]

Typical representative: deep learning based (SetRank [4], Rankformer [5])



Question: Is it possible to combine the advantages of both pairwise and listwise 
methods?

Predicting the order of a list is challenging because ranking 𝑁 entities from 1 to 

𝑁 is complex. However, breaking it down into (𝑁 × 𝑁) pairwise comparisons 

simplifies the task, as each pairwise comparison is more straightforward than 

ranking the entire list.
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Travelling salesman problem (TSP)

Adapted from https://www.linkedin.com/pulse/traveling-salesman-problem-14-different-
solutions-sandeep-kella/

Given a list of cities and the distances between each pair of cities, what is the shortest possible 
route that visits each city exactly once and returns to the origin city? It is an NP-hard problem in 
combinatorial optimization, important in theoretical computer science and operations 
research.



Rethink pairwise ranking in a graph…



Does this look familiar? 

We consider ranking as a TSP where the traveller does not go back to the start point at the end. 
It is also referred as the Open-Loop TSP.



TSPRank: A generic ranking model for existing backbone encoders

Pairwise modelling

Listwise inference / optimisation



Remaining Question

As the TSP solver is discrete, it does not produce gradients for backpropagation.



Local Learning & Global Learning

Two learning methods:
• Local learning: does not include 

the TSP solver in training loop.
• Global learning: includes the 

solver for end-to-end training.



Local Learning (weighted cross-entropy)

Objective: determine if entity 𝑒𝑗 should be ranked one position after 𝑒𝑖  in a given pair of entities.

• 𝐴𝑃: predicted pairwise scores matrix (adjacency matrix).
• 𝐴𝑡 : ground-truth adjacency matrix.
• 𝑦𝑘 : weighted term, true ordinal ranking for the true consecutive entity after entity 𝑖. (penalties 

vary based on the actual ranking positions)
• 𝑁  : number of ranking entities in the list.

Note: 𝑦𝑘 can be adjusted to 𝑁 + 1 − 𝑦𝑘 depending on whether 𝑦𝑘 represents ascending or descending order.



Global Learning (end-to-end, max-margin)

Objective: incorporating the TSP solver in the training procedure to better align the model with the 
inference process.

• 𝐴𝑃: predicted pairwise scores matrix (adjacency matrix).
• x𝑡 : target decision variables.
• x : predicted decision variables.
• Δ  : enforce a margin for each incorrectly identified edge.
 



Local Learning vs. Global Learning

Local learning:
• Weighted cross entropy
• Greedily modelling 𝑃 𝑒𝑗 𝑒𝑖)

Global learning:
• Max-margin
• End-to-end. Use the output from the discrete TSP solver to guide the training procedure
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Dataset

• Stock Ranking: introduced by 
Feng et al. [7], which includes 
historical trading data from 2013 to 
2017 for NASDAQ and NYSE.

• Information Retrieval: MQ2008-
list [8] from Microsoft.

• Event Ordering: “On This Day 2” 
(OTD2) [9] 

Task

• Rank next day stocks in the same sector 
and choose the top-K to invest.

• Rank a list of documents based on their 
technical indicators. 

• Event Ordering: chronologically ordering 
historical events given their text 
embeddings.



Benchmark Models

We choose the SOTA generic pairwise and listwise algorithms (not specifically tailored for any 
task).

LambdaMART [1] (pairwise, GBDT-based)
 
Rankformer [5] (listwise, transformer-based)



Metrics

Financial metrics 
• IRR@K: investment return ratio of investing the top K stocks.
• SR@K: sharpe ratio of investing the top K stocks.

Ranking metrics 
• MAP@K: mean average precision at K.
• Kendall’s tau (𝜏): a statistical measure evaluating the correlation between two ordinal rankings.
• MRR: mean reciprocal rank of the true top entity.
• NDCG@K: normalized discounted cumulative gain at K, measuring ranking quality.

Other metrics 
• RMSE: root mean squared error.
• EM: exact match rate.



Results: Stock Ranking



Results: Information Retrieval & Historical Events Ordering



Visualisation Analysis

Purpose: empirically explore why TSPRank-Global 
performs better.

We use the OTD2 dataset as the starting point as 
textual data is more interpretable.

We arbitrarily sample 3 events each from the US, UK, 
and China.
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Conclusion: Main Findings

• Better Performance of TSPRank, which is a hybrid method, across diverse tasks.

• Global learning outperforms local learning.

• With the help of the listwise optimisation provided by the TSP solver, TSPRank is 
more tolerant to errors and uncertainties in pairwise comparisons.

• GBDT-based pairwise ranking method does not always outperform deep learning 
based listwise ranking method as indicated by existing literatures.



Future Work

99.8% of the inference time is 
consumed by the discrete TSP solver.
Currently suitable for small-scale 

ranking problems such as the 
reranking stage in information 
retrieval, etc.

Future work can be replacing the 
Gurobi TSP solver by other heuristic 
algorithms or NN-based TSP solvers.
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Remaining Questions

1. Choose and setup the TSP solver.

[6] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https: //www.gurobi.com

• 𝑥𝑖𝑗: decision variable. 

• 𝑠𝑖𝑗: 𝑠(𝑒𝑖 , 𝑒𝑗)

• 𝑁: the total number of entities to be ranked.

• 𝑧𝑖: the number of entities ranked before entity 𝑖.

Objective function:

Constraints:



Remaining Questions

1. Choose and setup the TSP solver.

[6] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https: //www.gurobi.com

Each entity has at most one 
predecessor and one 
successor in the ranking

• 𝑥𝑖𝑗: decision variable. 

• 𝑠𝑖𝑗: 𝑠(𝑒𝑖 , 𝑒𝑗)

• 𝑁: the total number of entities tobe ranked.

• 𝑧𝑖: the number of entities ranked before entity 𝑖.



Remaining Questions

1. Choose and setup the TSP solver.

[6] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https: //www.gurobi.com

Ensures that the total 
number of pairwise 
comparisons is exactly 
𝑁 − 1 (open-loop).

• 𝑥𝑖𝑗: decision variable. 

• 𝑠𝑖𝑗: 𝑠(𝑒𝑖 , 𝑒𝑗)

• 𝑁: the total number of entities tobe ranked.

• 𝑧𝑖: the number of entities ranked before entity 𝑖.



Remaining Questions

1. Choose and setup the TSP solver.

[6] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https: //www.gurobi.com

• 𝑥𝑖𝑗: decision variable. 

• 𝑠𝑖𝑗: 𝑠(𝑒𝑖 , 𝑒𝑗)

• 𝑁: the total number of entities tobe ranked.

• 𝑧𝑖: the number of entities ranked before entity 𝑖.
Introduce variables 𝑧 to eliminate multiple separate 
sequences (subtours) and enforce that there is a single, 
complete ranking that includes all entities.
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